[image:]
Git Schulung - Einsteiger
[bookmark: __RefHeading___Toc1560_3217530933]Git-Schulung – Einsteiger
[image:]

Präsenz · 4 Stunden
Version: 1.0
Zielgruppe: Einsteiger
Format: Präsenz / Selbststudium

Inhaltsverzeichnis
Git-Schulung – Einsteiger	1
Ziel der Schulung	3
Voraussetzungen	3
1. Einstieg – Was ist Git? (ca. 20 Minuten)	4
2. Git installieren & erstes Repository (30 Minuten)	5
3. Die wichtigsten Git-Befehle (60 Minuten)	6
4. Branches verstehen (45 Minuten)	7
5. Git vs. GitHub vs. GitLab	8
6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)	9
7. Fehler beheben & Sicherheit (ca. 35 Minuten)	10
8. Tags & Versionen (v1.0, v1.1)	11
9. Best Practices & Abschluss	12
Anhang – Spickzettel	12

[bookmark: __RefHeading___Toc1562_3217530933]Ziel der Schulung
Nach dieser Schulung können die Teilnehmer: - Git im Alltag sicher nutzen - Änderungen sauber versionieren - Branches verstehen und anwenden - Mit GitHub / GitLab arbeiten - Typische Fehler selbst beheben
Wichtig: Fokus auf Praxis, kein unnötiger Theorieballast.
[bookmark: ziel-der-schulung]
[bookmark: __RefHeading___Toc1564_3217530933]Voraussetzungen
· Laptop (Windows / macOS / Linux)
· Internetzugang
· Texteditor (VS Code empfohlen, aber nicht Pflicht)
· Keine Git-Vorkenntnisse nötig

[bookmark: __RefHeading___Toc1568_3217530933]1. Einstieg – Was ist Git? (ca. 20 Minuten)
[bookmark: __RefHeading___Toc1570_3217530933]Was ist das Problem ohne Git?
Viele Projekte starten ohne Versionsverwaltung. Typische Situationen: - Mehrere Kopien eines Projekts: projekt_final, projekt_final2, projekt_final_neu - Niemand weiß, welche Version aktuell ist - Änderungen lassen sich nicht sauber zurückverfolgen - Fehler lassen sich nicht einfach rückgängig machen
[bookmark: __RefHeading___Toc1572_3217530933]Was Git löst
Git speichert den Verlauf eines Projekts: - Jede Änderung ist dokumentiert - Man kann jederzeit zu einem früheren Stand zurück - Mehrere Personen können parallel arbeiten
[bookmark: __RefHeading___Toc1574_3217530933]Was Git ist
· Ein lokales Versionsverwaltungssystem
· Läuft auf deinem Rechner
· Funktioniert auch ohne Internet
[bookmark: __RefHeading___Toc1576_3217530933]Was Git nicht ist
· Kein Backup-System
· Kein GitHub
· Kein Projektmanagement-Tool
[bookmark: __RefHeading___Toc1578_3217530933]Merksatz
Git ist eine Zeitmaschine für Dateien.

💡 Wissenswertes: Was bedeutet „Git“?
Git ist kein Akronym, sondern einfach der Name eines Werkzeugs zur Versionsverwaltung.
Der Name stammt von Linus Torvalds, dem Erfinder von Git.
Er sagte dazu sinngemäß:
„Ich bin ein egoistischer Bastard und nenne alle meine Projekte nach mir.“
Im britischen Englisch bedeutet „git“ umgangssprachlich:
· Nervensäge
· Idiot
· Trottel
→ ironisch gemeint, typisch Linus.

[bookmark: __RefHeading___Toc1582_3217530933]2. Git installieren & erstes Repository (30 Minuten)
[bookmark: __RefHeading___Toc1584_3217530933]Installation
Git muss einmalig installiert werden.
Windows - Download von git-scm.com - Standardoptionen sind ausreichend
macOS - Installation über Xcode Command Line Tools oder Homebrew
[bookmark: installation]Linux - Installation über den Paketmanager
[bookmark: __RefHeading___Toc1586_3217530933]Prüfen der Installation
git --version
[bookmark: prüfen-der-installation]Wenn eine Versionsnummer erscheint, ist Git korrekt installiert.

[bookmark: __RefHeading___Toc1588_3217530933]Erstes Repository erstellen
Ein Repository ist ein Ordner, der von Git überwacht wird.
mkdir git-demo
cd git-demo
git init
[bookmark: erstes-repository-erstellen]Nach git init erstellt Git einen versteckten Ordner .git. Dort speichert Git die komplette Historie.

[bookmark: __RefHeading___Toc1590_3217530933]Wichtige Begriffe
· Repository: Ein Projekt unter Git-Kontrolle
· Working Directory: Dein aktueller Arbeitsordner
· Commit: Ein gespeicherter Zustand

[bookmark: __RefHeading___Toc1594_3217530933]3. Die wichtigsten Git-Befehle (60 Minuten)
[bookmark: __RefHeading___Toc1596_3217530933]Grundprinzip
[bookmark: grundprinzip]Git arbeitet in drei Stufen: 1. Dateien ändern 2. Änderungen vormerken 3. Änderungen speichern

[bookmark: __RefHeading___Toc1598_3217530933]git status
Zeigt jederzeit: - Welche Dateien geändert wurden - Welche Dateien für den Commit vorgemerkt sind
git status
[bookmark: __RefHeading___Toc1600_3217530933]git add
Markiert Dateien für den nächsten Commit.
git add main.c
Oder alle Dateien:
git add .
[bookmark: __RefHeading___Toc1602_3217530933]git commit
Speichert den aktuellen Stand dauerhaft.
git commit -m "Initiale Version"
[bookmark: __RefHeading___Toc1604_3217530933]git log
Zeigt die Commit-Historie.
git log --oneline
[bookmark: __RefHeading___Toc1606_3217530933]Typischer Ablauf
[bookmark: typischer-ablauf]git status
git add .
git commit -m "Beschreibung der Änderung"

[bookmark: __RefHeading___Toc1610_3217530933]4. Branches verstehen (45 Minuten)
[bookmark: __RefHeading___Toc1612_3217530933]Was ist ein Branch?
[bookmark: was-ist-ein-branch]Ein Branch ist ein alternativer Entwicklungszweig. - Er zeigt auf einen bestimmten Commit - Änderungen im Branch beeinflussen main nicht

[bookmark: __RefHeading___Toc1614_3217530933]Warum Branches sinnvoll sind
· Neue Funktionen testen
· Fehler beheben
· [bookmark: warum-branches-sinnvoll-sind]Experimente ohne Risiko

[bookmark: __RefHeading___Toc1616_3217530933]Branch erstellen und wechseln
[bookmark: branch-erstellen-und-wechseln]git switch -c feature-test

[bookmark: __RefHeading___Toc1618_3217530933]Änderungen im Branch
· Dateien ändern
· [bookmark: änderungen-im-branch]Commit erstellen

[bookmark: __RefHeading___Toc1620_3217530933]Zurück nach main und mergen
[bookmark: zurück-nach-main-und-mergen]git switch main
git merge feature-test

[bookmark: __RefHeading___Toc1622_3217530933]Merge-Konflikte
Konflikte entstehen, wenn: - Die gleiche Zeile in zwei Branches geändert wurde
[bookmark: merge-konflikte]Git stoppt dann und bittet um eine Entscheidung.

[bookmark: __RefHeading___Toc1626_3217530933]5. Git vs. GitHub vs. GitLab
[bookmark: __RefHeading___Toc1628_3217530933]Git
Git ist ein lokales Versionsverwaltungssystem. - Läuft auf deinem Rechner - Funktioniert ohne Internet - Speichert die komplette Projekt-Historie
Git kann: - Commits - Branches - Merges - Tags
[bookmark: git]Git kann nicht: - Zusammenarbeit im Web - Benutzerverwaltung - Issue-Tracking
[bookmark: __RefHeading___Toc1630_3217530933]GitHub
GitHub ist eine Online-Plattform für Git-Repositories.
Eigenschaften: - Web-Oberfläche - Zusammenarbeit im Team - Pull Requests - Issues - CI/CD (GitHub Actions)
[bookmark: github]Typische Nutzung: - Open-Source-Projekte - Private Projekte - Kleine bis mittlere Teams
[bookmark: __RefHeading___Toc1632_3217530933]GitLab
GitLab ist ebenfalls eine Git-Plattform, aber stärker auf Teams und Firmen ausgelegt.
Eigenschaften: - Cloud oder selbst hostbar - Integriertes CI/CD - Benutzer- und Rechteverwaltung
Typische Nutzung: - Firmenprojekte - Interne Repositories - Embedded- und Industrieprojekte
[bookmark: __RefHeading___Toc1634_3217530933]Vergleich
	Thema
	Git
	GitHub
	GitLab

	Läuft lokal
	✅
	❌
	❌

	Internet nötig
	❌
	✅
	✅

	Versionsverwaltung
	✅
	✅
	✅

	Web-Oberfläche
	❌
	✅
	✅

	Teamarbeit
	❌
	✅
	✅

	Selbst hosten
	❌
	❌
	✅

	CI/CD
	❌
	✅
	[bookmark: vergleich]✅

[bookmark: __RefHeading___Toc1636_3217530933]Merksatz
Git ist das Werkzeug – GitHub und GitLab sind die Plattformen.
[bookmark: __RefHeading___Toc1640_3217530933]6. Arbeiten mit Remote (GitHub / GitLab) (ca. 45 Minuten)
[bookmark: __RefHeading___Toc1642_3217530933]Was ist ein Remote?
[bookmark: was-ist-ein-remote]Ein Remote ist ein Repository auf einem Server. - GitHub - GitLab - Firmeninterner Server

[bookmark: __RefHeading___Toc1644_3217530933]Wichtige Begriffe
· clone: Projekt herunterladen
· pull: Änderungen holen
· [bookmark: wichtige-begriffe-1]push: Änderungen senden

[bookmark: __RefHeading___Toc1646_3217530933]Repository klonen
[bookmark: repository-klonen]git clone <repo-url>

[bookmark: __RefHeading___Toc1648_3217530933]Änderungen holen
[bookmark: änderungen-holen]git pull

[bookmark: __RefHeading___Toc1650_3217530933]Änderungen senden
[bookmark: änderungen-senden]git push

[bookmark: __RefHeading___Toc1652_3217530933]Typische Fehler
· Push abgelehnt → vorher git pull
· [bookmark: typische-fehler]Falscher Branch → Branch prüfen

[bookmark: __RefHeading___Toc1656_3217530933]7. Fehler beheben & Sicherheit (ca. 35 Minuten)
[bookmark: __RefHeading___Toc1658_3217530933]Änderungen an Dateien verwerfen
[bookmark: änderungen-an-dateien-verwerfen]git restore datei.txt

[bookmark: __RefHeading___Toc1660_3217530933]Letzten Commit korrigieren
[bookmark: letzten-commit-korrigieren]git reset --soft HEAD~1

[bookmark: __RefHeading___Toc1662_3217530933]Änderungen rückgängig machen (sicher)
[bookmark: änderungen-rückgängig-machen-sicher]git revert <commit-id>

[bookmark: __RefHeading___Toc1664_3217530933]Wichtige Regel

[bookmark: wichtige-regel]Was gepusht wurde, sollte nicht mit reset geändert werden.

[bookmark: __RefHeading___Toc1668_3217530933]8. Tags & Versionen (v1.0, v1.1)
[bookmark: __RefHeading___Toc1670_3217530933]Wozu Tags?
Tags markieren feste Versionen im Projektverlauf.
Typische Einsatzfälle: - Firmware-Release (v1.0, v1.1) - Software-Versionen - reproduzierbare Builds
[bookmark: wozu-tags]Ein Tag zeigt immer auf einen bestimmten Commit.
[bookmark: __RefHeading___Toc1672_3217530933]Tag erstellen
[bookmark: tag-erstellen]git tag v1.0
[bookmark: __RefHeading___Toc1674_3217530933]Tag mit Beschreibung (empfohlen)
[bookmark: tag-mit-beschreibung-empfohlen]git tag -a v1.1 -m "Bugfix Release"
[bookmark: __RefHeading___Toc1676_3217530933]Tags anzeigen
[bookmark: tags-anzeigen]git tag
[bookmark: __RefHeading___Toc1678_3217530933]Tags pushen
Standardmäßig werden Tags nicht automatisch gepusht.
git push origin v1.1
Oder alle Tags:
[bookmark: tags-pushen]git push origin --tags
[bookmark: __RefHeading___Toc1680_3217530933]Embedded-Hinweis
· Tag = exakt reproduzierbarer Firmware-Stand
· Sehr wichtig für Support & Fehlersuche

[bookmark: __RefHeading___Toc1684_3217530933]9. Best Practices & Abschluss
[bookmark: __RefHeading___Toc1686_3217530933]Best Practices
· Kleine, saubere Commits
· Sinnvolle Commit-Messages
· .gitignore für:
· Build-Ordner (Embedded)
· [bookmark: best-practices]node_modules (Web)
[bookmark: __RefHeading___Toc1688_3217530933]Abschluss
· Fragen klären
· Nächste Schritte aufzeigen

[bookmark: ablauf-inhalte][bookmark: best-practices-abschluss][bookmark: abschluss][bookmark: ablauf-inhalte][bookmark: best-practices-abschluss][bookmark: abschluss]
[bookmark: __RefHeading___Toc1690_3217530933]Anhang – Spickzettel
git status – aktueller Zustand
git add – Änderungen vormerken
git commit – Änderungen speichern
git log – Historie anzeigen
git switch – Branch wechseln
git pull – Änderungen holen
git push – Änderungen senden
git tag – Version markieren

[bookmark: section]================================
[bookmark: pdf-hinweise-struktur]PDF-HINWEISE & STRUKTUR
[bookmark: section-1]================================
Trainer-Version vs. Teilnehmer-Version
Teilnehmer-Version
Diese Version ist für Selbststudium und Nachschlagen gedacht.
[bookmark: teilnehmer-version]Merkmale: - Erklärtexte vollständig - Beispiele und Merksätze - Übungen ohne Lösung
Trainer-Version
Diese Version enthält zusätzliche Hinweise für die Durchführung.
Zusätzlich enthalten: - Trainer-Notizen - typische Fragen - empfohlene Reihenfolge - Zeitmanagement-Hinweise
Empfehlung: - Teilnehmer bekommen die Teilnehmer-Version - Trainer arbeitet mit der Trainer-Version

Übungsaufgaben
Kapitel 1 – Git verstehen
Trainer-Notizen
· Teilnehmern klar machen: Git schützt vor Datenverlust
· Angst nehmen: Git kann fast nichts „kaputt machen”
Übung 1: - Erkläre in eigenen Worten den Unterschied zwischen Git und GitHub - Warum funktioniert Git auch ohne Internet?
[bookmark: kapitel-1-git-verstehen]
Kapitel 2 – Repository
Trainer-Notizen
· .git nicht anfassen oder löschen
· Betonung: Git verändert Dateien nicht automatisch
Übung 2: 1. Lege ein neues Verzeichnis an 2. Initialisiere ein Git-Repository 3. Prüfe den Status
[bookmark: kapitel-2-repository]
Kapitel 3 – Commits
Trainer-Notizen
· Immer wieder git status zeigen
· Commit-Messages erklären wie ein Änderungsprotokoll
Übung 3: 1. Lege eine Datei an (main.c oder index.html) 2. Erstelle drei Commits mit sinnvollen Nachrichten 3. Zeige die Historie an
[bookmark: kapitel-3-commits]
Kapitel 4 – Branches
Trainer-Notizen
· Konflikte bewusst erzeugen
· Zeigen, dass Konflikte lösbar sind
Übung 4: 1. Erstelle einen Feature-Branch 2. Ändere eine Datei 3. Merge den Branch zurück nach main

Kapitel 5 – GitHub / GitLab
Trainer-Notizen
· Diese Abgrenzung nimmt viel Verwirrung
· Erst Git erklären, dann Plattform
Übung 5: 1. Klone ein Repository 2. Ändere eine Datei 3. Push die Änderung
[bookmark: kapitel-5-github-gitlab]
Kapitel 6 – Fehler beheben
Trainer-Notizen
· HTTPS für Einsteiger empfehlen
· Remote als “gemeinsamen Treffpunkt” erklären
Übung 6: 1. Ändere eine Datei 2. Verwerfe die Änderung mit git restore
[bookmark: kapitel-6-fehler-beheben]
Kapitel 7 – Tags
Trainer-Notizen
· Unterschied reset vs. revert klar machen
· Sicherheit betonen
Trainer-Notizen
· Tags sind read-only Markierungen
· Nicht für tägliche Entwicklung nutzen
Übung 7: 1. Erstelle einen Tag v1.0 2. Erstelle einen annotierten Tag v1.1 3. Zeige alle Tags an

Release-Workflow – Tag → ZIP → Weitergabe
Ziel
Einen klar definierten Stand weitergeben (z. B. Firmware oder Web-Release).
[bookmark: ziel]
Schritt 1 – Sauberen Stand prüfen
git status
Ergebnis sollte sein:
working tree clean
[bookmark: schritt-1-sauberen-stand-prüfen]
Schritt 2 – Tag setzen
git tag -a v1.0 -m "Release v1.0"
[bookmark: schritt-2-tag-setzen]
Schritt 3 – Tag pushen
git push origin v1.0
[bookmark: schritt-3-tag-pushen]
Schritt 4 – ZIP aus Tag erzeugen
git archive --format=zip v1.0 -o projekt-v1.0.zip
[bookmark: schritt-4-zip-aus-tag-erzeugen]
Ergebnis
· ZIP enthält exakt den getaggten Stand
· Keine Build-Artefakte
· Reproduzierbar
[bookmark: ergebnis]
Embedded-Hinweis
· Ideal für Firmware-Weitergabe
· Support kann immer exakt diesen Stand auschecken
[image:]
Ulrich Radig
Seite 16
image1.jpeg
Git-Schulung

Einsteiger - Praxis-Workshop

init
commit -

branch

push origin main

(git commit ‘

image2.png

image3.png

